[San Jose State University Special AI Lecture Series VII - ML Fundamentals/Vibe Coding] ML Theory Meets Practice - Frameworks, Backpropagation & Live Coding

Sunghee Yun

Co-Founder & CTO @ Erudio Bio, Inc.
Co-Founder & CEO @ Erudio Bio Korea, Inc.
Leader of Silicon Valley Privacy-Preserving AI Forum (K-PAI)
CGO / Global Managing Partner @ LULUMEDIC
Global Leadership Initiative Fellow @ Salzburg Global Seminar
Visiting Professor & Advisory Professor @ Sogang Univ. & DGIST

About Speaker

• (Co-Founder & CTO @ Erudio Bio, Inc., San Jose & Novato, CA, USA	2023 ~		
• (Co-Founder & CEO @ Erudio Bio Korea, Inc., Korea	2025 ~		
• <u>L</u>	eader of Silicon Valley Privacy-Preserving Al Forum (K-PAI), CA, USA	2024 ~		
• (GGO / Global Managing Partner @ LULUMEDIC, Seoul, Korea	2025 ~		
• /	KFAS-Salzburg Global Leadership Fellow @ Salzburg Global Seminar, Austria	2024 ~		
• /	Adjunct Professor, EE Department @ Sogang University, Seoul, Korea	2020 ~		
• /	Advisory Professor, EECS Department @ DGIST, Korea	2020 ~		
• /	• Al-Korean Medicine Integration Initiative Task Force Member @ The Association of			
ŀ	Korean Medicine, Seoul, Korea	2025 ~		
• [Director of AI Semiconductor @ K-BioX, CA, USA	2025 ~		
• (Global Advisory Board Member @ Innovative Future Brain-Inspired Intelligence System 			
S	emiconductor of Sogang University, Korea	2020 ~		
T	echnology Consultant @ Gerson Lehrman Gruop (GLG), NY, USA	2022 ~		
• (Chief Business Development Officer @ WeStory.ai, Cupertino, CA, USA	2025 ~		
• A	dvisor @ CryptoLab, Inc., Seoul, Korea	2025 ~		

 Co-Founder & CTO / Head of Global R&D / Chief Applied Scientist / Gauss Labs, Inc., Palo Alto, CA, USA 	Senior Fellow @ $2020 \sim 2023$
• Senior Applied Scientist @ Amazon.com, Inc., Vancouver, BC, Canada	$2017 \sim 2020$
 Principal Engineer @ Software R&D Center, Samsung Electronics 	$2016 \sim 2017$
• Principal Engineer @ Strategic Marketing & Sales, Memory Business	$2015 \sim 2016$
 Principal Engineer @ DT Team, DRAM Development, Samsung 	$2012 \sim 2015$
• Senior Engineer @ CAE Team, Memory Business, Samsung, Korea	$2005 \sim 2012$
 PhD - Electrical Engineering @ Stanford University, CA, USA 	$2001 \sim 2004$
• Development Engineer @ Voyan, Santa Clara, CA, USA	$2000 \sim 2001$
MS - Electrical Engineering @ Stanford University, CA, USA	$1998 \sim 1999$
BS - Electrical & Computer Engineering @ Seoul National University	$1994 \sim 1998$

Highlight of Career Journey

- BS in Electrical Engineering (EE) @ Seoul National University
- MS & PhD in Electronics Engineering (EE) @ Stanford University
 - Convex Optimization Theory, Algorithms & Software
 - advisor Prof. Stephen P. Boyd
- Principal Engineer @ Samsung Semiconductor, Inc.
 - AI & Convex Optimization
 - collaboration with DRAM/NAND Design/Manufacturing/Test Teams
- Senior Applied Scientist @ Amazon.com, Inc.
 - e-Commerce Als anomaly detection, deep RL, and recommender system
 - Jeff Bezos's project drove \$200M in sales via Amazon Mobile Shopping App
- Co-Founder & CTO / Global R&D Head & Chief Applied Scientist @ Gauss Labs, Inc.
- Co-Founder & CTO @ Erudio Bio, Inc.
- Co-Founder & CEO @ Erudio Bio Korea, Inc.

Unpacking Al

•	ML Basics	- 5
	 Estimation, regression, and inference 	
	 Machine learning (ML) - basics & formulations 	
	 Deep learning (DL) - training, stochastic gradient descent (SGD), backpropagat 	tion
	 Al in practice 	
•	Reinforcement Learning	- 47
	- Markov decision process (MDP), Bellman equations, Bellman optimality equation	ons
	- Dynamic programming (DP), Monte Carlo methods, temporal-difference learning	ıg
	 Modern reinforcement learning 	
	 Alpha Go & modern RL applications 	
	 LLM & RL, RL evolution 	
•	Vibe coding demo!	
•	Selected references	- 109
•	References	- 111

ML Basics

Estimation, Regression, and Inference

The optimal estimator

- estimation problem
 - for two random variables $X \in \mathbf{R}^n$ & $Y \in \mathbf{R}^m$
 - design estimator or predictor $g: \mathbf{R}^n \to \mathbf{R}^m$ to make g(X) as close as possible to Y
- when closeness measured by mean-square-error (MSE), the optimal solution exists

$$g^*(x) = \mathbf{E}(Y|X=x)$$

Proof of optimality

$$\mathbf{E}_{X,Y}(g(X) - g^*(X))^T (g^*(X) - Y) = \mathbf{E}_{X,Y} \mathbf{E}((g(X) - g^*(X))^T (g^*(X) - Y)|X)$$

$$= \mathbf{E}_{X,Y} (g(X) - g^*(X))^T \mathbf{E}_{Y,Y} (g^*(X) - Y)|X)$$

$$= 0$$

hence

$$\begin{aligned} \mathbf{E} \|g(X) - Y\|_{2}^{2} &= \mathbf{E} \|g(X) - g^{*}(X) + g^{*}(X) - Y\|_{2}^{2} \\ &= \mathbf{E} \|g(X) - g^{*}(X)\|_{2}^{2} + \mathbf{E} \|g^{*}(X) - Y\|_{2}^{2} + 2 \mathbf{E} (g(X) - g^{*}(X))^{T} (g^{*}(X) - Y) \\ &= \mathbf{E} \|g(X) - g^{*}(X)\|_{2}^{2} + \mathbf{E} \|g^{*}(X) - Y\|_{2}^{2} \\ &\geq \mathbf{E} \|g^{*}(X) - Y\|_{2}^{2} \end{aligned}$$

Regression

• in most cases, *not* possible to obtain g^* (unless, e.g., full knowledge of join PDF)

- regression problem
 - given data set $D = \{(x_1, y_1), \dots, (x_N, y_N)\} \subset \mathbf{R}^n \times \mathbf{R}^m$
 - find $g:\mathbf{R}^n\to\mathbf{R}^m$ to make g(X) as close as possible to Y
- ullet given certain regression method, regressor depends on dataset D

$$g(\cdot; D)$$

Bias & variance

assuming ${\mathcal D}$ is random variable for dataset D

estimation MSE is

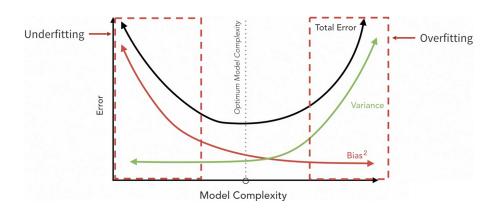
$$\underbrace{\frac{\mathbf{E}}{X,Y,\mathcal{D}} \|g(X;\mathcal{D}) - Y\|_{2}^{2}}_{\text{Variance}} = \underbrace{\frac{\mathbf{E}}{X,\mathcal{D}} \|g(X;\mathcal{D}) - \frac{\mathbf{E}}{\mathcal{D}} g(X;\mathcal{D})\|_{2}^{2}}_{\text{Variance}} + \underbrace{\frac{\mathbf{E}}{X} \|\frac{\mathbf{E}}{\mathcal{D}} g(X;\mathcal{D}) - g^{*}(X)\|_{2}^{2}}_{\text{bias}} + \underbrace{\frac{\mathbf{E}}{X,Y} \|g^{*}(X) - Y\|_{2}^{2}}_{\text{noise}}$$

$$= \underbrace{\frac{\mathbf{E}}{X,\mathcal{D}} \|g(X;\mathcal{D}) - \frac{\mathbf{E}}{\mathcal{D}} g(X;\mathcal{D})\|_{2}^{2}}_{\text{Variance}} + \underbrace{\frac{\mathbf{E}}{X,Y} \|\frac{\mathbf{E}}{\mathcal{D}} g(X;\mathcal{D}) - Y\|_{2}^{2}}_{\text{bias} + \text{noise}}$$

- bias & variance
 - bias measures how good model is in average
 - variance measures how much model varies depending on dataset it is trained on
- noise cannot be reduced even with the optimal predictor

Model choice & hyperparameter optimization

- want to choose model or modeling method to make both bias & variance low
 - (too) complex models have low bias, but high variance
 - (too) simple models have low variance, but high bias
- usually solved by *hyperparameter optimization*
 - sometimes called *hyperparameter tuning*



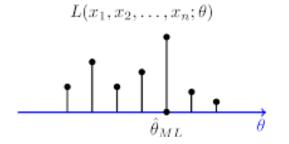
MLE

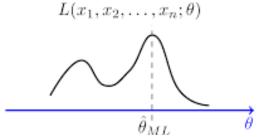
- maximum likelihood estimation (MLE)
 - assume parameterized distribution of $X \in \mathbf{R}^n$ by $\theta \in \Theta$ $p(x;\theta)$
 - find θ maximizing *likelihood function*

$$p(x_1,\ldots,x_N; heta) = \prod_{i=1}^N p(x_i; heta)$$

MLE solution

$$\hat{ heta}_{ ext{MLE}} = rgmax_{ heta \in \Theta} \prod_{i=1}^N p(x_i; heta)$$





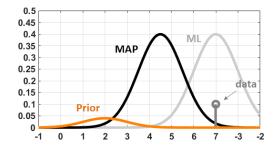
MAP estimation

- maximum a posteriori (MAP) estimation
 - assume *prior knowledge* of θ $p(\theta)$
 - assume parameterized distribution of $X \in \mathbf{R}^n$ by θ $p(x|\theta)$
 - find θ maximizing posteriori probability

$$p(\theta|x_1,\ldots,x_N)$$

- Bayes' theorem implies $p(\theta|x_1,\ldots,x_N) \propto p(\theta) \prod_{i=1}^N p(x_i|\theta)$
- MAP solution

$$\hat{\theta}_{\mathrm{MAP}} = \operatorname*{argmax}_{\theta \in \Theta} p(\theta) \prod_{i=1}^{N} p(x_i | \theta)$$



Bayesian inference

- both MLE & MAP estimation are point estimations
- Bayesian inference
 - updates prior distribution by replacing it with posterior distribution
- conjugate prior
 - if prior can be further parameterized by hyperparameter α and posterior is in same probability distribution family, both prior and posterior called *conjugate distributions*, prior called *conjugate prior*

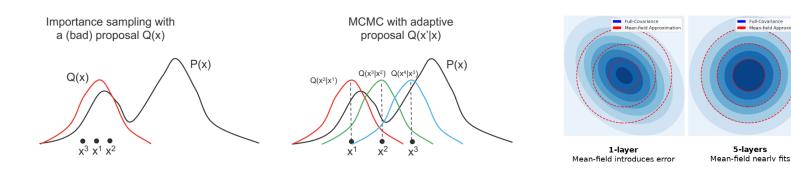
$$p(\theta; \alpha)$$

- in this case, can update hyperparameter α , *i.e.*, find α^+ such that

$$p(\theta; \alpha^+) = p(\theta|x_1, \dots, x_N; \alpha) = \frac{p(\theta; \alpha) \prod_{i=1}^N p(x_i|\theta; \alpha)}{p(x_1, \dots, x_N; \alpha)}$$

Bayesian algorithms & methods

- exact inference methods
 - conjugate priors e.g., Beta-Binomial, Normal-Normal, etc.
- Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings algorithm, Gibbs sampling, Hamiltonian Monte Carlo (HMC)
- variational inference (VI)
 - mean field variational Bayes assuming parameter independence for tractability
 - structured variational inference maintaining dependencies & inference tractability
 - variational autoencoder (VAE) NN-based VI for complex distributions



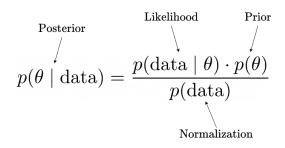
Pros & cons of Bayesian inference

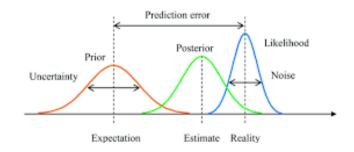
pros

- principled uncertainty quantification providing complete probability distributions
- incorporates prior knowledge allowing to formally include domain expertise, etc.
- coherent framework providing mathematically consistent approach
- natural sequential learning easily handles streaming data or online learning scenarios
- interpretable results outputs directly interpretable as probabilities

cons

- computational complexity often requiring sophisticated sampling methods
- prior sensitivity, scalability issues, implementation difficulty, slower inference, model selection challenges





Machine learning

ML

- subfield of computer science that "gives computers the ability to learn without being explicitly programmed."
 - Arthur Samuel (1959)
- not magic, still less intelligent than humans for many cases
- numerically minimizes certain (mathematical) loss function to (indirectly) solve some statistically meaningful problems

Machine learning is the subfield of computer science that gives "computers the ability to learn without being explicitly programmed."

Arthur Samuel

Two famous quotes and one non-famous quote

Albert Einstein

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms.

Alfred North Whitehead

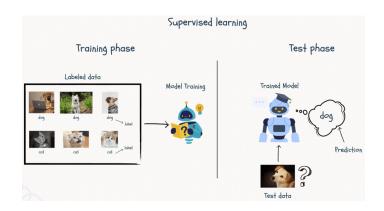
Civilization advances by extending the number of important operations which we can perform without thinking about them. - Operations of thought are like cavalry charges in a battle – they are strictly limited in number, they require fresh horses, and must only be made at decisive moments.

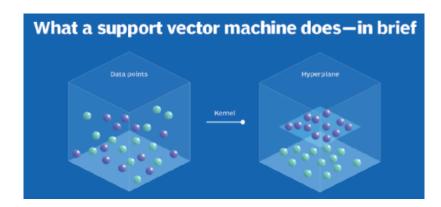
Demis Hassabis

... biology can be thought of as information processing system, albeit extraordinarily complex and dynamic one ... just as mathematics turned out to be the right description language for physics, biology may turn out to be the perfect type of regime for the application of AI!

Supervised learning

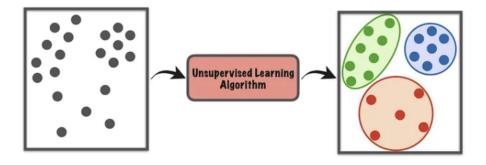
- most basic and widely used type of ML
- model is trained on dataset where correct output or "label" is provided for each input
- use cases
 - image classification, object detection, semantic segmentation
 - natural language processing (NLP) text classification, sentiment analysis
 - predictive modeling, medical diagnosis
- algorithms
 - linear regression, logistic regression, decision trees, random forest
 - support vector machine (SVM), k-nearest neighbors (kNN)





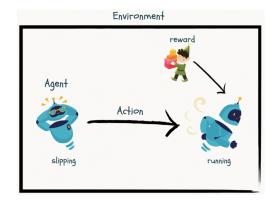
Unsupervised learning

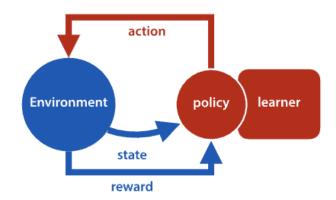
- model is given dataset without any labels or output
- model finds patterns & structure within data on its own
- use cases
 - clustering, dimensionality reduction
 - anomaly detection, generative models
- algorithms
 - k-means clutering, hierarchical clustering, principal component analysis (PCA)
 - t-distributed stochastic neighbor embedding (t-SNE)



Reinforcement learning

- (quite different from supervised & unsupervised learnings)
- model learns from consequences of its actions
 - model receives feedback on its performance; feedback called reward
 - uses that information to adjust its actions and improve its performance over time
- use cases
 - robotics, game playing, autonomous vehicles, industrial control
 - healthcare, finance
- algorithms
 - Q-learning, SARSA, DQN, A3C, policy gradient





Loss minimization

- ullet assume data set $\{(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})\}$ with $x^{(i)}\in\mathbf{R}^n$, $y^{(i)}\in\mathbf{R}^q$
- loss minimization is to solve

minimize
$$\frac{1}{m}\sum_{i=1}^m l(y^{(i)}, f(x^{(i)}; \theta))$$

where optimization variable is $\theta \in \mathbf{R}^p$, $f: \mathbf{R}^n \times \mathbf{R}^p \to \mathbf{R}^q$ is model function & $l: \mathbf{R}^q \times \mathbf{R}^q \to \mathbf{R}_+$ is loss function

- find model with smallest modeling error
- loss function examples
 - Eucleadina norm (2-norm) $\|y \hat{y}\|_2^2$
 - 1-norm $\|y \hat{y}\|_1$
 - soft-max $y^T \exp(\hat{y})/\mathbf{1}^T \exp(\hat{y})$

Statistical problem formulation

- ullet assume data set $X_m = \{x^{(1)}, \dots, x^{(m)}\}$
 - drawn independently from (true, but unknown) data generating distribution $p_{\mathrm{data}}(x)$
- maximum likelihood estimation (MLE) is to solve

maximize
$$p_{\mathrm{model}}(X; \theta) = \prod_{i=1}^m p_{\mathrm{model}}(x^{(i)}; \theta)$$

where optimization variable is heta

- find most plausible or likely model that fits data
- equivalent (but more numerically tractable) formulation

maximize
$$\log p_{\mathrm{model}}(X;\theta) = \sum_{i=1}^{m} \log p_{\mathrm{model}}(x^{(i)};\theta)$$

MLE & KL divergence

ullet in information theory, Kullback-Leibler (KL) divergence defines distance between two probability distributions $p\ \&\ q$

$$D_{\mathrm{KL}}(p||q) = \mathop{\mathbf{E}}_{X \sim p} \log p(X) / q(X) = \int_{x \in \Omega} p(x) \log \frac{p(x)}{q(x)} dx$$

ullet KL divergence between data distribution $p_{
m data}$ & model distribution $p_{
m model}$ can be approximated by Monte Carlo method as

$$D_{\mathrm{KL}}(p_{\mathrm{data}} \| p_{\mathrm{model}}(\theta)) \simeq \frac{1}{m} \sum_{i=1}^{m} (\log p_{\mathrm{data}}(x^{(i)}) - \log p_{\mathrm{model}}(x^{(i)}; \theta))$$

where $x^{(i)}$ are drawn (of course) according to p_{data}

• hence minimizing KL divergence is equivalent to solving MLE problem!

Equivalence of MLE to MSE

• assume model is Gaussian, i.e., $y \sim \mathcal{N}(g_{\theta}(x), \Sigma)$ $(g_{\theta}(x) \in \mathbf{R}^p, \Sigma \in \mathbf{S}^p_{++})$

$$p(y|x;\theta) = \frac{1}{\sqrt{2\pi}^{p}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(y - g_{\theta}(x))^{T} \Sigma^{-1}(y - g_{\theta}(x))\right)$$

ullet assuming that $\Sigma=lpha I_p$, log-likelihood becomes

$$\begin{split} \sum_{i=1}^{m} \log p(x^{(i)}, y^{(i)}; \theta) &= \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta) p(x^{(i)}) \\ &= -\sum_{i=1}^{m} \|y^{(i)} - g_{\theta}(x^{(i)})\|_{2}^{2} / 2\alpha - \frac{pm}{2} \log(2\pi\alpha) + \sum_{i=1}^{m} \log p(x^{(i)}) \end{split}$$

• hence minimizing mean-square-error (MSE) is equivalent to solving MLE problem!

Numerical optimization problem formulation

• (true) problem to solve

minimize
$$\mathbf{E} l(g_{\theta}(X), Y)$$

- impossible to solve
- loss minimize formulation surrogate problem to solve

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m l(g_{\theta}(x^{(i)}), y^{(i)})$$

• formulation with regularization

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m l(g_{\theta}(x^{(i)}), y^{(i)}) + \gamma r(\theta)$$

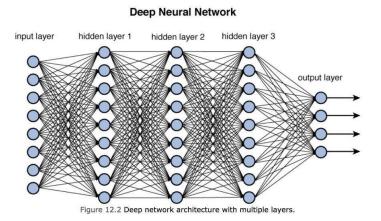
stochastic gradient descent (SGD)

$$\theta^{k+1} = \theta^k - \alpha_k \nabla f(\theta^k)$$

Deep Learning

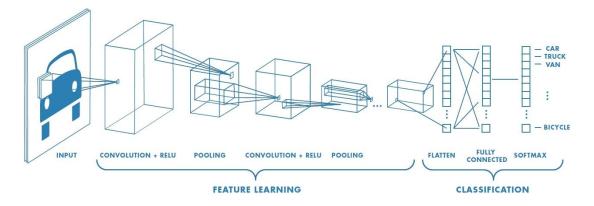
Deep learning (DL)

- machine learning using artificial neural networks with multiple layers for
 - automatically learning hierarchical representations of data
- key components
 - deep neural networks, hidden layers, backpropagation, activation functions
 - hierarchical feature learning, representation learning, end-to-end learning
- key breakthroughs enabling DL
 - massively available data, GPU computing, algorithmic advances



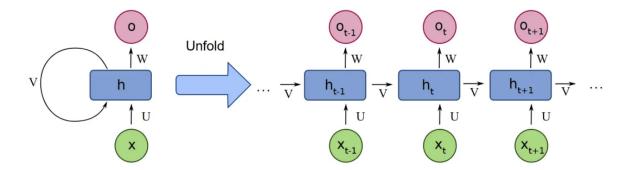
Convolutional neural network (CNN)

- specialized DL learning architecture designed for
 - processing grid-like data such as images
 - where spatial relationships between pixels matter
- key components
 - convolutional layers, pooling layers, activation functions, fully connected layers
- how it works
 - feature extraction, translation invariance, parameter sharing
- why it excels
 - local connectivity, hierarchical learning



Recurrent neural network (RNN)

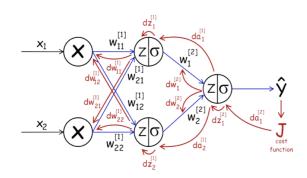
- neural network designed for
 - processing sequential data by maintaining memory of previous inputs
- key components
 - hidden states, recurrent connections, input/output layers, weight sharing
- how it works
 - sequential processing, memory mechanism, temporal dependencies
- why it excels
 - variable length input, context awareness, flexible architecture
- variants long short-term memory (LSTM), gated recurrent unit (GRU)

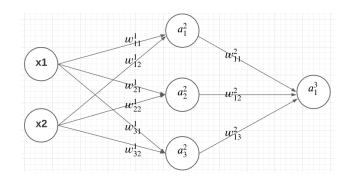


Training DNN using SGD

Notations

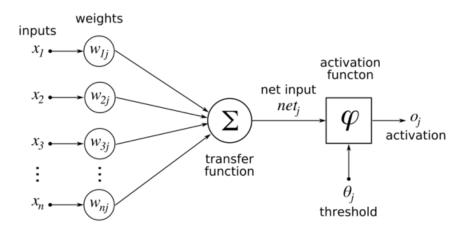
- ullet $p \ / \ q$ dimension of input / output spaces
- $l: \mathbf{R}^q \times \mathbf{R}^q \to \mathbf{R}_+$ loss function
- ullet d depth of neural network
- n_i ($1 \le i \le d$) number of perceptrons in ith layer
- $ullet z^{[i]} \in \mathbf{R}^{n_i}$ input to ith layer
- ullet $o^{[i]} \in \mathbf{R}^{n_i}$ output of ith layer
- ullet $W^{[i]} \in \mathbf{R}^{n_i imes n_{i-1}}$ weights of connections between (i-1)th and ith layer
- $ullet w^{[i]} \in \mathbf{R}^{n_i imes n_{i-1}}$ bias weights of ith layer
- ullet $\phi^{[i]}: \mathbf{R}^{n_i}
 ightarrow \mathbf{R}^{n_i}$ activation functions of ith layer



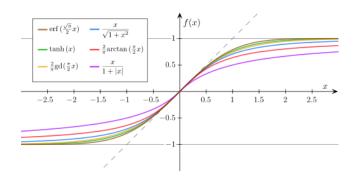


Basic unit & activation function

• basic unit



activation function



Neural net equations

ullet modeling function for the (deep) neural network $g_{ heta}: \mathbf{R}^p
ightarrow \mathbf{R}^q$

$$g_{ heta} = \phi_{ heta}^{[d]} \circ \psi_{ heta}^{[d]} \circ \cdots \circ \phi_{ heta}^{[1]} \circ \psi_{ heta}^{[1]}$$

or equivalently

$$g_{\theta}(x) = \phi_{\theta}^{[d]}(\psi_{\theta}^{[d]}(\cdots(\phi_{\theta}^{[1]}(\psi_{\theta}^{[1]}(x)))))$$

- for *i*th layer
 - output via (componentwise) activation function

$$o^{[i]} = \phi^{[i]}(z^{[i]}) \Leftrightarrow o^{[i]}_j = \phi^{[i]}_j(z^{[i]}_j) \quad (1 \le j \le n_i)$$

– input via affine transformation $\psi^{[i]}: \mathbf{R}^{n_{i-1}}
ightarrow \mathbf{R}^{n_i}$

$$z^{[i]} = \psi^{[i]}(o^{[i-1]}) = W^{[i]}o^{[i-1]} + w^{[i]}$$

Stochastic gradient descent

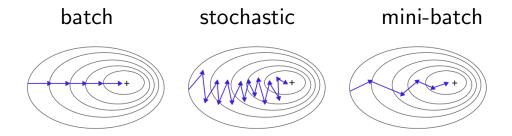
• ML training tries to minimize some loss function - $f(\theta)$ depends on (not only θ , but also) batch of data $(x^{(1)}, y^{(1)}), \ldots (x^{(m)}, y^{(m)})$

minimize
$$f(\theta)$$

- while exist hundreds of optimization methods solving this problem
 - the only method used widely is stochastic gradient descent!
- (stochastic) gradient descent

$$\theta^{k+1} = \theta^k - \alpha^k \nabla f(\theta^k)$$

• backpropagation is used to evaluate this (stochastic) gradient using chain rule



Chain rule

suppose

- two functions $f: \mathbf{R}^n \to \mathbf{R}^m \ \& \ g: \mathbf{R}^m \to \mathbf{R}$
- Jacobian of f Df : $\mathbf{R}^n \to \mathbf{R}^{m \times n}$
- gradient of g $\nabla g: \mathbf{R}^m \to \mathbf{R}^m$
- gradient of composite function $h = g \circ f$

$$\nabla h(\theta) = Df(\theta)^T \nabla g(f(\theta)) \in \mathbf{R}^n$$
 (using matrix-vector multiplication)

in other words

$$\frac{\partial}{\partial \theta_i} h(\theta) = \sum_{j=1}^m \frac{\partial}{\partial \theta_i} f_j(\theta) \nabla_j g(f(\theta)) \quad \text{(scalar version)}$$

Loss function & its gradient

assume cost function of deep neural network is

$$f(\theta) = \frac{1}{m} \sum_{k=1}^{m} l(g_{\theta}(x^{(k)}), y^{(k)}) = \frac{1}{m} \sum_{k=1}^{m} f_{k}(\theta)$$

where

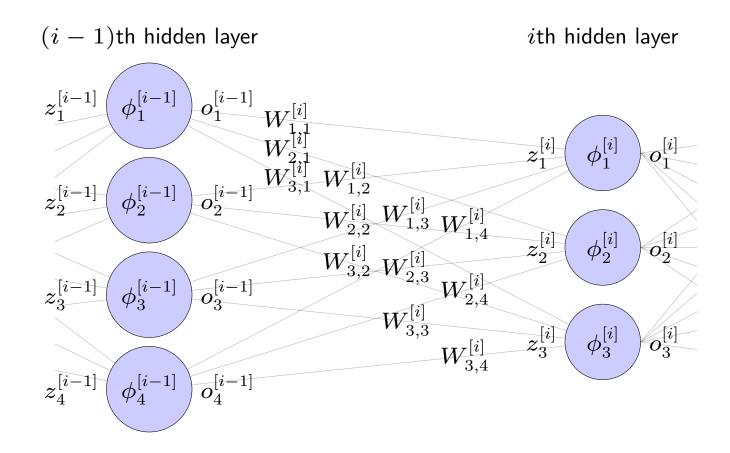
$$f_k(\theta) = l(g_{\theta}(x^{(k)}), y^{(k)})$$

gradient is

$$m
abla_{ heta} f(heta) = \sum_{k=1}^m
abla_{ heta} l(g_{ heta}(x^{(k)}), y^{(k)}) = \sum_{k=1}^m
abla_{ heta} f_k(heta)$$

– $\emph{i.e.}$, evaluate gradient $abla_{ heta} f_k(heta)$ for each data point $(x^{(k)},y^{(k)})$

Hidden layers



Backpropagation formula using chain rule

- for each data $(x^{(k)}, y^{(k)})$
 - via activation function

$$\frac{\partial}{\partial z_j^{[i]}} f_k(\theta) = \frac{\partial}{\partial o_j^{[i]}} f_k(\theta) \phi_j^{[i]'}(o_j^{[i]}) \quad \text{for } 1 \le j \le n_i$$
 (1)

where ${\phi_j^{[i]}}'(o_j^{[i]})$ is derivative of activation function $\phi_j^{[i]}$ evaluated at $o_j^{[i]}$

via affine transformation

$$\frac{\partial}{W_{j,l}^{[i]}} f_k(\theta) = o_l^{[i-1]} \frac{\partial}{\partial z_j^{[i]}} f_k(\theta) \quad \text{for } 1 \le j \le n_i \& 1 \le l \le n_{i-1} \quad (2)$$

$$\frac{\partial}{\partial w_j^{[i]}} f_k(\theta) = \frac{\partial}{\partial z_j^{[i]}} f_k(\theta) \quad \text{for } 1 \le j \le n_i$$
 (3)

$$\frac{\partial}{\partial o_l^{[i-1]}} f_k(\theta) = \sum_{j=1}^{n_i} W_{j,l}^{[i]} \frac{\partial}{\partial z_j^{[i]}} f_k(\theta) \quad \text{for } 1 \le l \le n_{i-1}$$
 (4)

Backpropagation formula using matrix-vector multiplication

- for each data $(x^{(k)}, y^{(k)})$
 - via activation function

$$\nabla_{z[i]} f_k(\theta) = D\phi^{[i]} \nabla_{o[i]} f_k(\theta) \tag{5}$$

where $D\phi^{[i]}=\mathbf{diag}({\phi_1^{[i]}}'(o_1^{[i]}),\ldots,{\phi_{n_i}^{[i]}}'(o_{n_i}^{[i]}))$ is Jacobian of $\phi^{[i]}$ evaluated at $o^{[i]}$

via affine transformation

$$\nabla_{W[i]} f_k(\theta) = \nabla_{z[i]} f_k(\theta) o^{[i-1]^T} \in \mathbf{R}^{n_i \times n_{i-1}}$$
 (6)

$$\nabla_{w^{[i]}} f_k(\theta) = \nabla_{z^{[i]}} f_k(\theta) \in \mathbf{R}^{n_i}$$
 (7)

$$\nabla_{o^{[i-1]}} f_k(\theta) = W^{[i]^T} \nabla_{z^{[i]}} f_k(\theta) \in \mathbf{R}^{n_{i-1}}$$
(8)

Backpropagation formula using Python numpy package

- for each data $(x^{(k)}, y^{(k)})$
 - via activation function

$$grad_z = phi_dir * grad_o$$
 (9)

where grad_z, phi_dir, grad_o are 1d numpy.ndarray of size n_i

via affine transformation

$$grad_W = numpy.dot(grad_z, val_o.T)$$
 (10)

$$grad_w = grad_z.copy()$$
 (11)

where val_o, grad_w are 1d numpy.ndarray of size n_i , grad_o_prev is 1d numpy.ndarray of size n_{i-1} , grad_W is 2d numpy.ndarray of shape (n_i, n_{i-1})

Gradient evaluation using backpropagation

ullet forward propagation - evaluate for each $(x^{(k)},y^{(k)})$

$$g_{ heta}(x^{(k)}) = \phi_{ heta}^{[d]}(\psi_{ heta}^{[d]}(\cdots(\phi_{ heta}^{[1]}(\psi_{ heta}^{[1]}(x^{(k)}))))$$

- backpropagation evaluate partial derivatives backward
 - evaluate gradient with respect to output of output layer $o^{[d]} = g_{ heta}(x^{(k)})$

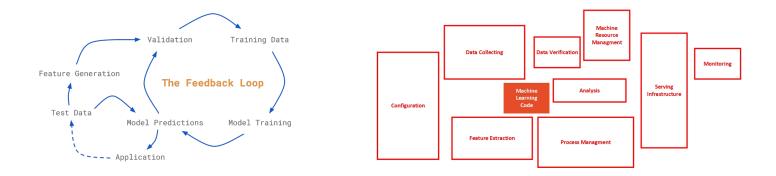
$$abla_{o[d]} f_k(\theta) =
abla_{y_1} l(g_{\theta}(x^{(k)}), y^{(k)})$$

- evaluate gradient with respect to input from that with respect to output using (1), or equivalently, using (5) *i.e.*, evaluate $\nabla_{z[i]} f_k(\theta)$ from $\nabla_{a[i]} f_k(\theta)$
- evaluate gradient with respect to weights, bias, and intput of previous layer using (3), (4), & (2) or equivalently, using (7), (8), & (6) i.e., evaluate $\nabla_{W^{[i]}} f_k(\theta)$, $\nabla_{w^{[i]}} f_k(\theta)$ & $\nabla_{a^{[i-1]}} f_k(\theta)$ from $\nabla_{a^{[i]}} f_k(\theta)$
- repeat back to input layer to evaluate all

$$\nabla_{W^{[1]}} f_k(\theta), \nabla_{w^{[1]}} f_k(\theta), \dots, \nabla_{W^{[d]}} f_k(\theta), \nabla_{w^{[d]}} f_k(\theta)$$

ML in practice

- define business problem business objective, success metrics, establish baselines (early)
- data collection data cleaning, validation & exploratory data analysis (EDA)
- feature engineering based on domain expertise
- train/validation/test split stratified sampling, chronological splits for time-series
- model selection or/and hyperparameter optimization
- monitoring, retraining & notification
- \bullet start simple, iterative fast (fail fast!), validate business impact e.g., A/B test



Reinforcement Learning

Reinforcement learning (RL)

- machine learning where agent learns how to take actions to achieve goal
 - by maximizing cumulative reward
 - while interacting with environment
- learning from interaction foundational idea underlying all learning & intelligence
- differs from supervised learning
 - labeled input and output pairs not presented
 - sub-optimal actions need not be explicitly corrected
- focus is finding balance between exploration & exploitation

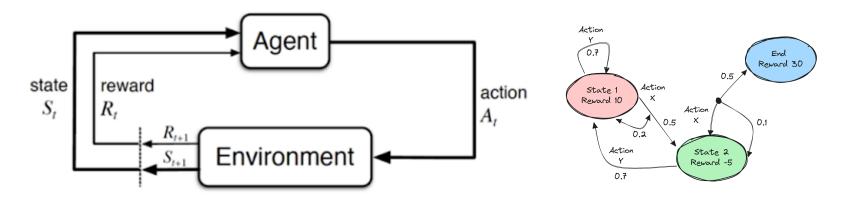
Why Deep RL?

Koray Kavukcuoglu (director of research at Deepmind) says

If one of the goals we work for here is AI, then it is at the core of that. RL is a very general framework for learning sequential decision making tasks. And DL, on the other hand, is (of course) the best set of algorithms we have to learn representations. And combinations of these two different models is the best answer so far we have in terms of learning very good state representations of very challenging tasks that are not just for solving toy domains but actually to solve challenging real world problems.

Markov decision process (MDP)

- classical formulation of sequential decision making
 - actions influence not just immediate rewards, but also subsequent states, hence, involving delayed reward
 - need to trade-off immediate and delayed reward
- elements states, actions, reward, and return
- agent interacts with environment
 - agent makes decision as to which action to take with knowledge of state it's in
 - action changes (state of) environment
 - agent receives reward



MDP & Markov property

- agent in *state* S_t takes *action* A_t at t
 - receives *reward* R_{t+1} (from environment)
 - environment transitions to state S_{t+1}
- sequence of random variables $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, \dots$
- Markov property S_{t+1} , $R_{t+1}|S_t$, A_t , R_t , S_{t-1} , A_{t-1} , R_{t-1} , . . . = S_{t+1} , $R_{t+1}|S_t$, A_t
 - formally expressed (using PDF)

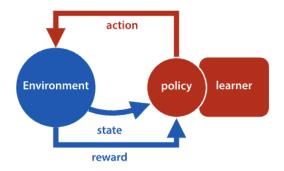
$$p(S_{t+1}, R_{t+1} | S_t, A_t, R_t, S_{t-1}, A_{t-1}, R_{t-1}, \ldots) = p(S_{t+1}, R_{t+1} | S_t, A_t)$$

Policy & return

• policy - conditional probability of A_t given S_t

$$\pi(A|S) = p(A_t|S_t),$$

- return (at t) $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
- ullet $\gamma \in [0,1]$ discount factor
 - if $\gamma = 0$, myopic
 - if $\gamma = 1$, truly far-sighted
 - if $\gamma \in (0,1)$, considers near-future rewards more importantly than those in far future



State value function & action value function

state value function (sometimes referred to simply as value function)

$$v_{\pi}(s) = \mathop{\mathbf{E}}_{\pi,p} \left\{ \left. G_t \right| S_t = s \right\} = \mathop{\mathbf{E}}_{\pi,p} \left\{ \left. \sum_{k=0}^{\infty} \gamma^k R_{t+k} \right| S_t = s \right\}$$

- function of state expected return agent will get from s when following π
- action value function (sometimes referred to simply as action function)

$$q_{\pi}(s, a) = \mathop{\mathbf{E}}_{\pi, p} \{ G_t | S_t = s, A_t = a \} = \mathop{\mathbf{E}}_{\pi, p} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k} \middle| S_t = s, A_t = a \right\}$$

- function of state & action expected return agent will get from s when agent takes a
- (most) RL algorithms (try to) maximize either of these functions not maximizing immediate reward, but long-term return

Bellman

- Richard E. Bellman
 - introduced dynamic programming (DP) in 1953
 - proposed Bellman equation as necessary condition for optimality associated with DP

$$v_{\pi}(s) \stackrel{:}{=} \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s\right]$$

$$\stackrel{!}{=} \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s\right]$$

$$\stackrel{!}{=} \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t+1} = s'\right]\right]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s')\right], \quad \forall s \in \mathcal{S}, \quad (3.12)$$

Bellman equations

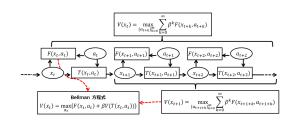
Bellman equation for state value function

$$v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s, a) = \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \left(r + \gamma v_{\pi}(s')\right)$$
(13)

Bellman equation for action value function

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r|s, a) (r + \gamma v_{\pi}(s'))$$

$$= \sum_{s',r} p(s',r|s,a) \left(r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s',a') \right)$$
 (14)



Bellman equation derviation - state value function

- Markov property implies
 - value functions only depend on current state & action taken
 - function value closely related to function values of next states
- these facts cleverly used to derive Bellman equations

$$v_{\pi}(s) = \underset{\pi,p}{\mathbf{E}} \{G_{t} | S_{t} = s\}$$

$$= \underset{A_{t} | S_{t} = s}{\mathbf{E}} \underset{\pi,p}{\mathbf{E}} \{G_{t} | S_{t} = s, A_{t}\}$$

$$= \sum_{a} p(A_{t} = a | S_{t} = s) \underset{\pi,p}{\mathbf{E}} \{G_{t} | S_{t} = s, A_{t} = a\}$$

$$= \sum_{a} \pi(a|s) \underset{\pi,p}{\mathbf{E}} \{G_{t} | S_{t} = s, A_{t} = a\}$$

$$= \sum_{a} \pi(a|s) q_{\pi}(s, a)$$
(15)

Bellman equation derviation - action value function

$$q_{\pi}(s, a) = \underset{\pi, p}{\mathbf{E}} \left\{ G_{t} \middle| S_{t} = s, A_{t} = a \right\}$$

$$= \underset{S_{t+1}, R_{t+1} \mid S_{t} = s, A_{t} = a}{\mathbf{E}} \underset{\pi, p}{\mathbf{E}} \left\{ G_{t} \middle| S_{t} = s, A_{t} = a, S_{t+1}, R_{t+1} \right\}$$

$$= \underset{S_{t+1}, R_{t+1} \mid S_{t} = s, A_{t} = a}{\mathbf{E}} \underset{\pi, p}{\mathbf{E}} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s, A_{t} = a, S_{t+1}, R_{t+1} \right\}$$

$$= \underset{S_{t+1}, R_{t+1} \mid S_{t} = s, A_{t} = a}{\mathbf{E}} \underset{\pi, p}{\mathbf{E}} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \middle| S_{t} = s, A_{t} = a, S_{t+1}, R_{t+1} \right\}$$

$$= \underset{S', r}{\sum} p_{S_{t+1}, R_{t+1} \mid S_{t}, A_{t}} (s', r \mid s, a)$$

$$\underset{\pi, p}{\mathbf{E}} \left\{ R_{t+1} + \gamma G_{t+1} \middle| S_{t} = s, A_{t} = a, S_{t+1} = s', R_{t+1} = r \right\}$$

$$= \sum_{s',r} p_{S_{t+1},R_{t+1}|S_t,A_t}(s',r|s,a)$$

$$\left(r + \gamma \mathop{\mathbf{E}}_{\pi,p} \left\{ G_{t+1}|S_t = s, A_t = a, S_{t+1} = s', R_{t+1} = r \right\} \right)$$

$$= \sum_{s',r} p_{S_{t+1},R_{t+1}|S_t,A_t}(s',r|s,a) \left(r + \gamma \mathop{\mathbf{E}}_{\pi,p} \left\{ G_{t+1}|S_{t+1} = s' \right\} \right)$$

$$= \sum_{s',r} p_{S_{t+1},R_{t+1}|S_t,A_t}(s',r|s,a) \left(r + \gamma v_{\pi}(s')\right)$$
(16)

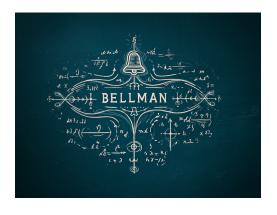
Optimal functions

ullet define *optimal state-value function* as that of optimal policy π_*

$$v_*(s) = v_{\pi_*}(s) = \max_{\pi \in \Pi} v_{\pi}(s)$$
(17)

• (similarly) define optimal action-value function as that of π_*

$$q_*(s,a) = q_{\pi_*}(s,a) = \max_{\pi \in \Pi} q_{\pi}(s,a)$$
 (18)



Bellman optimality equations

(17) & (18) with (15) & (16) imply

Bellman optimality equation for state value function

$$v_*(s) = v_{\pi_*}(a) = \max_{a \in \mathcal{A}} q_{\pi_*}(s, a) = \max_{a \in \mathcal{A}} \sum_{s', r} p(s', r|s, a) \left(r + \gamma v_{\pi}(s')\right)$$
(19)

Bellman optimality equation for action value function

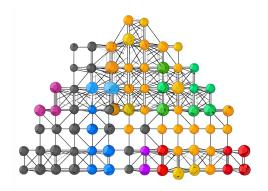
$$q_{*}(s, a) = q_{\pi_{*}}(s, a) = \sum_{s', r} p(s', r|s, a) \left(r + \gamma v_{\pi_{*}}(s')\right)$$

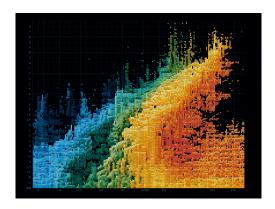
$$= \sum_{s', r} p(s', r|s, a) \left(r + \gamma \max_{a' \in \mathcal{A}} q_{\pi_{*}}(s', a')\right)$$
(20)

Dynamic Programming

Dynamic programming (DP)

- collection of algorithms to compute optimal policies given perfect model of environment as MDP
- provide essential foundation for understanding of RL methods
- all RL algorithms can be viewed as attempts to achieve much the same effect as DP
 - only with less computation and without assuming perfect model of environment
- key idea of RL in general
 - use of value functions to organize and structure search for good policies





Policy evaluation (prediction)

- policy evaluation (in DP literature)
 - compute state-value function v_π for arbitrary policy π
 - also referred to as prediction problem
- ullet existence and uniqueness of v_π guaranteed as long as either
 - $-\gamma < 1$
 - eventual termination is guaranteed from all states under policy π
- policy evaluation algorithm uses fact that all state value functions satisfy Bellman equation (note resemblance to 13) algorithm described in Table 1

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma v_k(s')\right)$$

0.0	-14.	-20.	-22.			+	←	₽
-14.	-18.	-20.	-20.	policy improvement	1	ţ	₽	ţ
-20.	-20.	-18.	-14.	·	1	t ₊	t,	ţ
-22.	-20.	-14.	0.0		t.	→	→	

Algorithm - iterative policy evaluation

```
Inputs: \pi, MDP Algorithm parameters: \theta > 0 (small threshold determining accuracy of estimation) Initialize V(s) \in \mathbf{R} for all s \in \mathcal{S} except that V(\text{terminal}) = 0 Loop:  \Delta \leftarrow 0  For each s \in \mathcal{S}:  v \leftarrow V(s)   V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma V(s')\right)   \Delta \leftarrow \max\{\Delta, |v - V(s)|\}  until \Delta < \theta
```

Table 1: Iterative Policy Evaluation for estimating $V \sim v_\pi$

Policy iteration

• iterative process of improving policy to maximize value functions

• algorithm described in Table 2

Algorithm - policy iteration

```
Inputs: MDP
Algorithm parameters: \theta > 0 (small threshold determining accuracy of estimation)
1. Initialization
     V(s) \in \mathbf{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ for all } s \in \mathcal{S}
2. Policy Evaluation
     Loop:
           \Delta \leftarrow 0
          For each s \in \mathcal{S}:
                v \leftarrow V(s)
               V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma V(s')\right)
                \Delta \leftarrow \max\{\Delta, |v - V(s)|\}
     until \Delta < \theta
3. Policy Improvement
u \leftarrow \mathtt{true}
     For each s \in \mathcal{S}
          b \leftarrow \pi(s)
          \pi(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma v_{\pi}(s')\right)
          If b \neq \pi(s), then t \leftarrow \text{false}
     If u, then stop and return V \sim v_* and \pi \sim \pi_*; else go to 2
```

Table 2: Policy Iteration (using iterative policy evaluation) for estimating $\pi \sim \pi_*$

Value iteration

- drawback to policy iteration
 - each iteration involves policy evaluation
- policy evaluation step can be truncated without losing convergence guarantees
- value iteration
 - policy evaluation is stopped after just one sweep by turning Bellman optimality equation (19) into update rule
 - can be written as simple update operation combining policy improvement and truncated policy evaluation steps

$$v_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \sum_{s',r} p(s',r|s,a) \left(r + \gamma v_k(s')\right)$$

• (in-place version of) algorithm described in Table 3

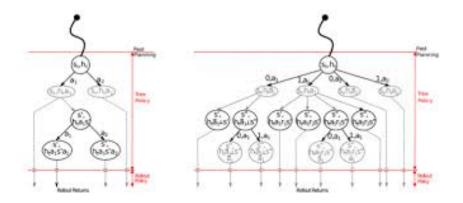
Algorithm - value iteration

```
Inputs: MDP Algorithm parameters: \theta > 0 (small threshold determining accuracy of estimation) Initialize V(s) \in \mathbf{R} for all s \in \mathcal{S} except that V(\text{terminal}) = 0 Loop:  \Delta \leftarrow 0  For each s \in \mathcal{S}:  v \leftarrow V(s)   V(s) \leftarrow \max_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|s,a) \left(r + \gamma V(s')\right)   \Delta \leftarrow \max\{\Delta,|v-V(s)|\}  until \Delta < \theta Output: deterministic policy \pi such that  \pi(s) = \operatorname{argmax}_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|s,a) \left(r + \gamma V(s')\right)
```

Table 3: Value Iteration for estimating $\pi \sim \pi_*$

Monte Carlo methods

- do not assume complete knowledge of environment
- require only experience sample sequences of states, actions & rewards
 - from actual or simulated interaction with environment
- require no prior knowledge of environment's dynamics
 - not complete probability distributions required for DP
 - yet can still attain optimal behavior
- simulation can be used



Monte Carlo prediction

- (simply) average returns observed after visits to each state
- Monte Carlo (MC) prediction methods very similar but slightly different theoretical properties
 - first-visit MC method most widely studied, dating back to 1940s
 - every-visit MC method extends more naturally to function approximation and eligibility traces
- first-visit MC prediction algorithm described in Table 4

Algorithm - first-visit MC prediction

```
Inputs: \pi

Initialize: V(s) \in \mathbf{R} \text{ for all } s \in \mathcal{S}
R(s) \leftarrow \mathtt{list}() \text{ for all } s \in \mathcal{S}

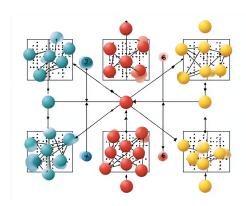
Loop: Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
G \leftarrow 0
Loop for each step of episode, t + T - 1, T - 2, \ldots, 0: G \leftarrow \gamma G + R_{t+1}
If S_t \not\in \{S_0, S_1, \ldots, S_{t-1}\}: R(S_t).\mathsf{append}(G)
V(S_t) \leftarrow R(S_t).\mathsf{average}()
Until a certain criterion is satisfied
```

Table 4: First-visit MC prediction for estimating $V \sim v_\pi$

Monte Carlo control

ullet proceed according to same pattern as DP, *i.e.*, according to idea of generalized policy iteration (GPI)

- maintain both approximate policy & approximate value functions
 - value functions repeatedly altered to more closely approximate value function for current policy
 - policy repeatedly improved with respect to current value function
- complete simple algorithm, called *Monte Carlo with Exploring Starts (ES)* described in Table 5



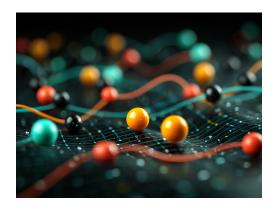
Algorithm - MC ES

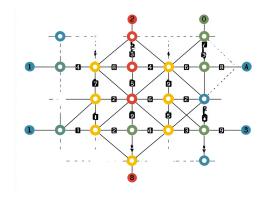
```
Initialize: \pi(s) \in \mathcal{A}(s) \text{ for all } s \in \mathcal{S} Q(s,a) \in \mathbf{R} \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}(s) R(s,a) \leftarrow \mathrm{list}() \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}(s) Loop: \mathrm{Choose} \ S_0 \in \mathcal{S}, \ A_0 \in \mathcal{A}(S_0) \text{ randomly such that all pairs have probability } > 0 Generate an episode from S_0, \ A_0 \text{ following } \pi\colon S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T G \leftarrow 0 Loop for each step of episode, t + T - 1, T - 2, \ldots, 0: G \leftarrow \gamma G + R_{t+1} If S_t \not\in \{S_0, S_1, \ldots, S_{t-1}\}: R(S_t, A_t). \mathrm{append}(G) Q(S_t, A_t) \leftarrow R(S_t, A_t). \mathrm{average}() \pi(S_t) \leftarrow \mathrm{argmax} \ a \in \mathcal{A}(S_t) \ Q(S_t, a) Until a certain criterion is satisfied
```

Table 5: MC ES for estimating $\pi \sim \pi_*$

Monte Carlo control without exploring starts

- want to avoid unlikely assumption of exploring starts
- only general way to ensure that all actions are selected infinitely often is for agent to continue to select them
- two approaches to ensure this
 - on-policy methods attempt to evaluate or improve policy used to make decisions
 - off-policy methods evaluate or improve policy different from used to generate data
- ullet on-policy first-visit MC control using ϵ -greedy, not using unrealistic assumption of exploring starts, described in Table 6





Algorithm - on-policy first-visit MC control

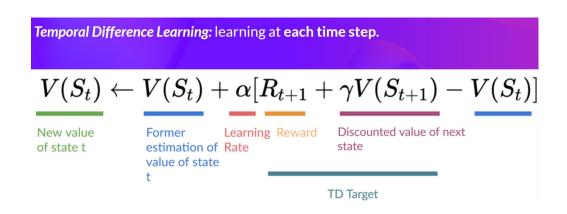
```
Algorithm parameters: small \epsilon > 0
Initialize:
     \pi(s) \in \mathcal{A}(s) for all s \in \mathcal{S}
     Q(s, a) \in \mathbf{R} for all s \in \mathcal{S} and a \in \mathcal{A}(s)
     R(s,a) \leftarrow \text{list}() \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}(s)
Loop:
     Choose S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
     Generate an episode from S_0, A_0 following \pi: S_0, A_0, R_1, S_1, A_1, R_2, ..., S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t + T - 1, T - 2, \dots, 0:
           G \leftarrow \gamma G + R_{t+1}
           If S_t \not\in \{S_0, S_1, \dots, S_{t-1}\}:
                 R(S_t, A_t).append(G)
                 Q(S_t, A_t) \leftarrow R(S_t, A_t).average()
                 A^* \leftarrow \operatorname{argmax}_{a \in \mathcal{A}(S_t)}
                 For all a \in \mathcal{A}(S_t)
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \epsilon + \epsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \epsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
Until a certain criterion is satisfied
```

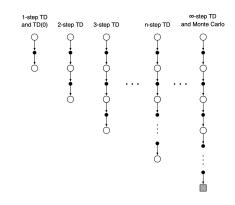
Table 6: On-policy first-visit MC control (for ϵ -soft policies) for estimating $\pi \sim \pi_*$

Temporal-difference Learning

Temporal-difference (TD) learning

- combination of MC ideas & DP ideas
 - like MC, learn directly from raw experience without model of environment's dynamics
 - like DP, update estimates based in part on other learned estimates, without waiting for final outcome - they bootstrap
- relationship between TD, DP & MC methods recurring theme in theory of RL
- ullet will start focusing on policy evaluation or prediction problem, i.e., estimating v_π
- control problem (to find optimal policy)
 - DP, TD & MC methods all use some variation of generalized policy iteration (GPI)





TD prediction

- both TD & MC use experience to solve prediction problem
- simple every-visit MC method suitable for nonstationary environments

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t)) = (1 - \alpha)V(S_t) + \alpha G_t$$

- TD methods wait only until next time step
 - at t+1, form target and make update using reward R_{t+1} & estimate $V(S_{t+1})$
- TD(0) one-step TD simplest TD method

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

= $(1 - \alpha)V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}))$ (21)

- TD(0) is special case of TD(λ) & n-step TD methods
- TD(0) described in Table 7 in procedural form

Algorithm - TD(0) for estimating v_{π}

```
Inputs: the policy \pi to be evaluated Algorithm parameters: step size \alpha \in (0,1]

Initialize: V(s) \in \mathbf{R} for all s \in \mathcal{S} except that V(\text{terminal}) = 0

Loop for each episode: Initialize S
Loop for each step of episode: A \leftarrow \text{ action given by } \pi \text{ for } S
Take action A, observe R, S'
V(S) \leftarrow (1-\alpha)V(S) + \alpha(R+\gamma V(S'))
S \leftarrow S'
until S is terminal
Until a certain criterion is satisfied
```

Table 7: TD(0) for estimating v_{π} .

TD error

• *TD error* - quantity in brackets in TD(0) update

$$\delta_t := R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \tag{22}$$

- difference between estimated value of S_t & better estimate $R_{t+1} + \gamma V(S_{t+1})$
- arise in various forms throughout RL
- define modified TD error

$$\delta_t' := R_{t+1} + \gamma V_{t+1}(S_{t+1}) - V_t(S_t) \tag{23}$$

Monte Carlo error

- MC error
 - difference between return along path from t to terminal state & state-value function

$$G_t - V_t(S_t) = \sum_{k=t}^{T-1} \gamma^{k-t} \delta_k' = \sum_{k=0}^{T-t-1} \gamma^k \delta_{k+t}'$$
 (24)

- can be expressed as sum of discounted (modified) one-step TD errors.
- ullet assuming that every V_t does not change during episode
 - δ_t coincides with δ_t'
 - hence, (24) becomes

$$G_t - V(S_t) = \sum_{k=t}^{T-1} \gamma^{k-t} \delta_k = \sum_{k=0}^{T-t-1} \gamma^k \delta_{k+t}.$$
 (25)

MC error - derivation

MC error

$$\begin{split} G_t - V_t(S_t) &= R_{t+1} + \gamma G_{t+1} - V_t(S_t) \\ &= R_{t+1} + \gamma \left(G_{t+1} - V_{t+1}(S_{t+1}) + V_{t+1}(S_{t+1}) \right) - V_t(S_t) \\ &= R_{t+1} + \gamma V_{t+1}(S_{t+1}) - V_t(S_t) + \gamma \left(G_{t+1} - V_{t+1}(S_{t+1}) \right) \\ &= \delta'_t + \gamma \left(G_{t+1} - V_{t+1}(S_{t+1}) \right) \\ &= \delta'_t + \gamma \delta'_{t+1} + \gamma^2 \left(G_{t+2} - V_{t+2}(S_{t+2}) \right) \\ &= \delta'_t + \gamma \delta'_{t+1} + \gamma^2 \delta'_{t+2} + \dots + \gamma^{T-t-2} \delta'_{T-2} + \gamma^{T-t-1} \left(G_{T-1} - V_{T-1}(S_{T-1}) \right) \\ &= \delta'_t + \gamma \delta'_{t+1} + \gamma^2 \delta'_{t+2} + \dots + \gamma^{T-t-2} \delta'_{T-2} + \gamma^{T-t-1} \left(R_T + \gamma V_T(S_T) - V_{T-1}(S_{T-1}) \right) \\ &= \delta'_t + \gamma \delta'_{t+1} + \gamma^2 \delta'_{t+2} + \dots + \gamma^{T-t-2} \delta'_{T-2} + \gamma^{T-t-1} \delta'_{T-1} \\ &= \sum_{k=t}^{T-1} \gamma^{k-t} \delta'_k = \sum_{k=0}^{T-t-1} \gamma^k \delta'_{k+t} \end{split}$$

where fact that state-value function for terminal state, $V_{T-1}(S_T)$, is 0 is used

Sarsa - on-policy TD Control

- (as in all on-policy methods)
 - continually estimate q_{π} for behavior policy π
 - (at the same time) change π toward greediness with respect to q_π
- convergence properties depend on nature of policy's dependence on Q
 - examples of policies ϵ -greedy or ϵ -soft
- ullet converges with probability 1 to an optimal policy & optimal action-value function as long as
 - all state-action pairs are visited infinite number of times
 - policy converges in the limit to greedy policy
- algorithm is described in Table 8

Algorithm - sarsa for estimating $Q \sim q_*$

```
Algorithm parameters: step size \alpha \in (0,1] and small \epsilon > 0

Initialize: Q(s,a) \in \mathbf{R} for all s \in \mathcal{S} and a \in \mathcal{A}(s) except Q(\operatorname{terminal}, \cdot) = 0

Loop for each episode: Initialize S
Choose A from S using policy derived from Q(e.g., \epsilon\text{-greedy})
Loop for each step of episode: Take action A, observe R, S'
Choose A' from S' using policy derived from Q(e.g., \epsilon\text{-greedy})
Q(S,A) \leftarrow (1-\alpha)Q(S,A) + \alpha(R+\gamma Q(S',A'))
S \leftarrow S', A \leftarrow A',
until S is terminal
Until a certain criterion is satisfied
```

Table 8: Sarsa (on-policy TD control) for estimating $Q \sim q_*$

Q-learning - off-policy TD control

- development of off-policy TD control algorithm known as Q-learning (Watkins, 1989) one of early breakthroughs in RL
- update defined by

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right)$$
$$= (1 - \alpha)Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) \right)$$

- ullet learned action-value function Q directly approximates optimal action-value function q_st , independent of policy being followed
 - dramatically simplifies analysis of algorithm & enabled early convergence proofs
- ullet Q has been shown to converge with probability 1 to q_*
- algorithm described in Table 9

Algorithm - Q-learning for estimating $\pi \sim \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1] and small \epsilon > 0

Initialize: Q(s,a) \in \mathbf{R} for all s \in \mathcal{S} and a \in \mathcal{A}(s) except Q(\operatorname{terminal}, \cdot) = 0

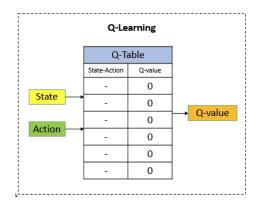
Loop for each episode: Initialize S
Loop for each step of episode: Choose A from S using policy derived from Q(e.g., \epsilon\text{-greedy})
Take action A, observe R, S'
Q(S,A) \leftarrow (1-\alpha)Q(S,A) + \alpha(R+\gamma \max_{a \in \mathcal{A}(S')} Q(S',a))
S \leftarrow S'
until S is terminal
Until a certain criterion is satisfied
```

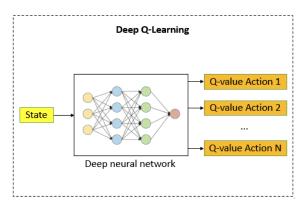
Table 9: Q-learning (off-policy TD control) for estimating $\pi \sim \pi_*$

Modern Reinforcement Learning

Deep Q-learning revolution

- problem with classical Q-learning
 - limited to small, discrete state spaces
 - Q-table becomes intractable for complex environments
 - cannot handle high-dimensional inputs, e.g., images, continuous states
- deep Q-networks (DQN)
 - replace Q-table with deep neural network (DNN)
 - DNN approximates action-value function Q(s,a)
 - handle raw pixel inputs, continuous states
 - enables RL in complex environments, e.g., Atari games, robotics

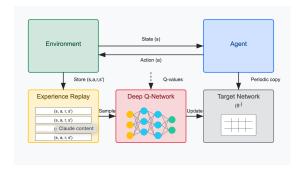


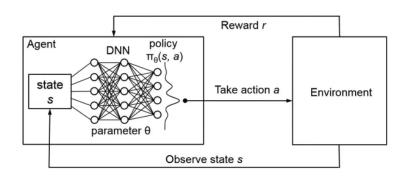


DQN architecture & key innovations

- experience replay
 - store transitions (s, a, r, s') in replay buffer & sample mini-batches for training
 - break correlation between consecutive samples to improve data efficiency and stability
- target network
 - separate target network for computing TD targets being updated periodically
 - reduce correlation between Q-values & targets to improve training stability
- DQN loss function

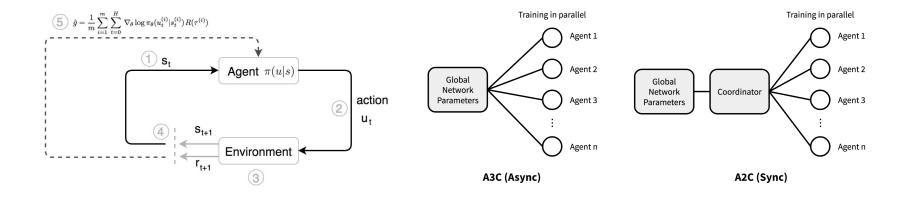
$$L(\theta) = \mathbf{E}((r + \gamma \max_{a'} Q(s', a'; \theta^{-}) - Q(s, a; \theta))^{2}$$





Policy gradient methods

- limitations of value-based approaches
 - indirect policy optimization
 - difficulty with continuous action spaces
 - may not find stochastic optimal policies
- policy gradient methods
 - direct policy optimization & natural handling of continuous actions
 - can learn stochastic policies & better convergence properties (in some cases)



Policy gradient algorithm

- merit cuntion $J(\theta) = \mathbf{E}(V(S_0)|\pi_{\theta}) = \mathbf{E}\left(\sum_{t=0}^{\infty} \gamma^t R_t | \pi_{\theta}\right)$
- maximization problem formulation

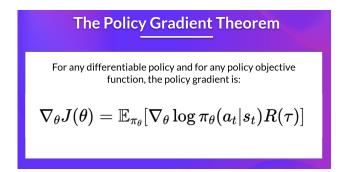
$$\begin{array}{ll} \text{maximize} & J(\theta) \\ \text{subject to} & \theta \in \Theta \\ \end{array}$$

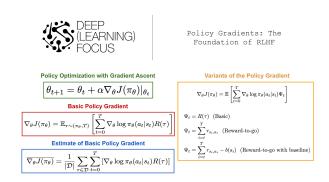
REINFORCE algorithm

$$\theta^{k+1} = \theta^k + \alpha^k \nabla J(\theta^k)$$

where

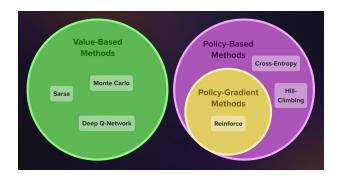
$$\nabla_{\theta} J(\theta) = \mathbf{E}(\nabla_{\theta} \log \pi(a|s;\theta) Q^{\pi}(s,a))$$

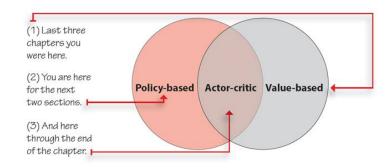




Q-learning vs policy gradients

- Q-learning
 - does not always work
 - usually more sample-efficient (when it works)
 - challenge exploration
 - no guarantee for convergence
- policy gradients
 - very general, but suffers from high variance
 - requires lots of samples
 - converges to local minima of $J(\theta)$
 - challenge sample-efficiency





AlphaGo & AlphaGo Zero Technologies

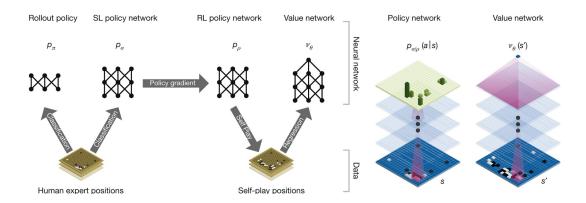
AlphaGo

- deep reinforcement learning with Monte Carlo tree search
 - trained on thousands of years of Go game history
 - AlphaGo Zero learns by playing against itself
- development experience, insight, knowledge, know-how transferred to AlphaFold

AlphaGo - hybrid approach - 2016

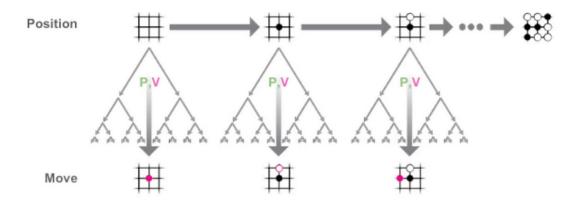
components

- policy network predicts human expert moves
- value network evaluates board positions
- Monte Carlo tree search (MCTS) explores game tree
- rollout policy fast playouts for MCTS
- training process
 - supervised learning train policy network on human games
 - RL improve policy through self-play
 - regression train value network on self-play positions



AlphaGo Zero - pure RL revolution - 2017

- breakthrough no human knowledge
 - learns from scratch through self-play, no human game data or handcrafted features
 - much stronger than original AlphaGo
- simplified architecture
 - single neural network with two heads policy head $\pi(a|s)$ & value head v(s)
- key innovations
 - residual NN enable very deep networks
 - MCTS with NN perfect integration
 - self-play curriculum gradually increasing difficulty



Modern RL Applications & Industry Examples

Autonomous systems

- Waymo Google
 - RL for trajectory planning and decision making
 - Simulation-based training with millions of scenarios
 - Integration with traditional planning algorithms
- Tesla Autopilot
 - RL for lane changes and complex driving scenarios
 - Real-world data collection and training

Gaming & entertainment

- OpenAl Five for playing Dota 2
 - complex multi-agent environment
 - long-term planning (45+ minute games)
- DeepMind AlphaStar for playing StarCraft II
 - league-based training, population-based methods
 - partial observability challenges
 - human-level performance

Robotics

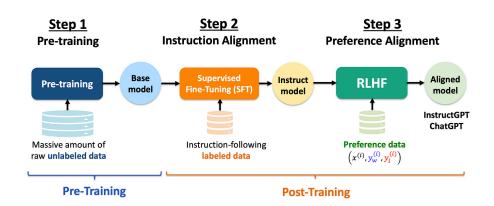
- Boston Dynamics
 - RL for dynamic locomotion
 - sim-to-real transfer
 - robust control policies
- Covariant warehouse automation
 - RL for robotic picking and manipulation
 - real-world deployment in warehouses
 - continuous learning from experience

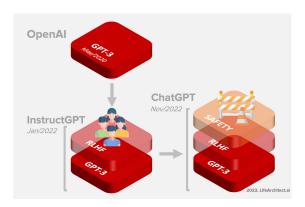
Finance & trading

- JP Morgan Chase
 - algorithmic trading with RL
 - portfolio optimization
 - risk management
- Two Sigma, Renaissance Technologies
 - market making and execution
 - multi-agent trading environments

RLHF - RL from human feedback

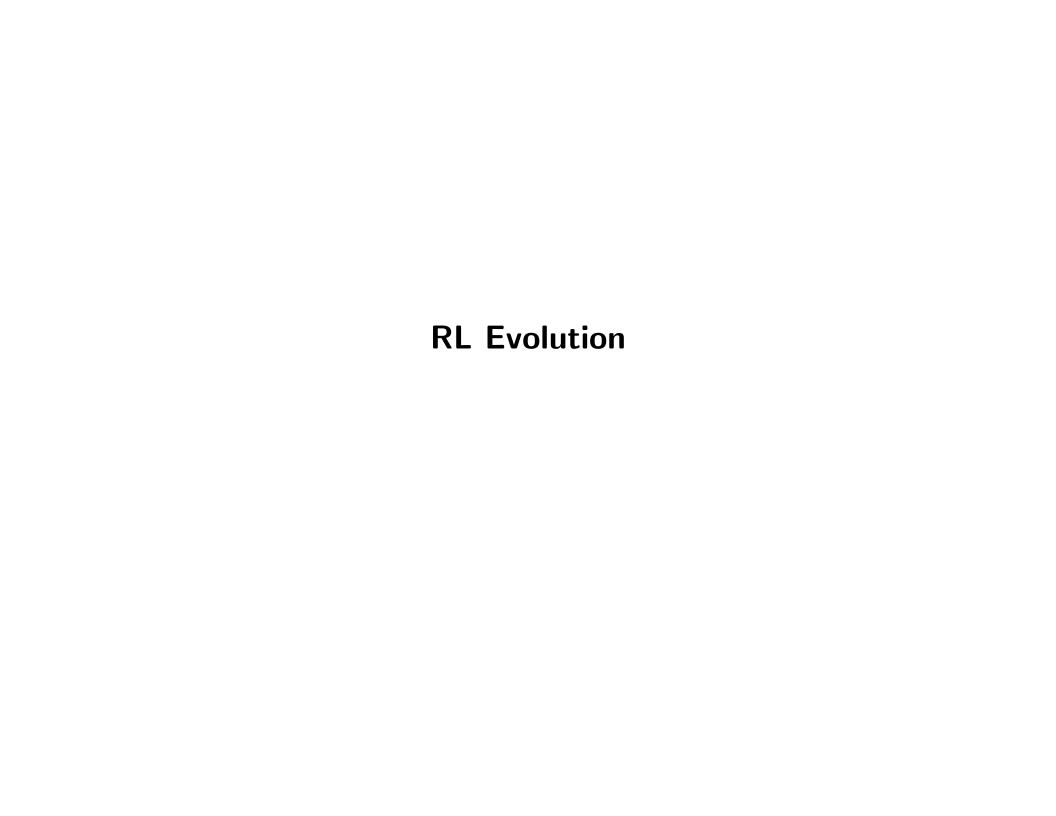
- ChatGPT, GPT-4 training pipelines
 - supervised fine-tuning train on human demonstrations
 - reward model training learn human preferences
- key components
 - reward model predicts human preferences
 - KL penalty prevents deviation from original model
 - constitutional AI self-improvement through AI feedback





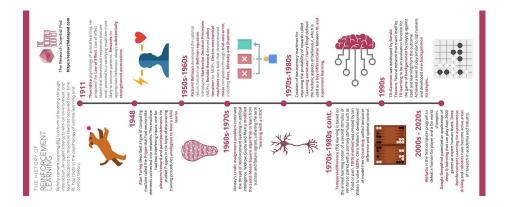
Applications in LLMs

- OpenAI ChatGPT/GPT-4
 - RLHF for helpful, harmless, honest responses
 - massive scale PPO training
 - human preference learning
- Anthropic Claude
 - constitutional Al methods
 - self-supervised preference learning
 - scalable oversight techniques



Classical to modern RL

- key progressions
 - tabular o function approximation o DNN / model-free o model-based o hybrid
 - single agent ightarrow multi-agent ightarrow large-scale systems
- core principles *intact*
 - exploration vs exploitation trade-off / Bellman equations & Bellman optimality
 - policy improvement & evaluation / generalized policy iteration (GPI)
- modern additions
 - scale and compute power / human feedback integration
 - safety & robustness considerations / multi-modal and foundation models (e.g., LLM)



Selected References & Sources

Selected references & sources

•	Robert H. Kane "Quest for Meaning: Values, Ethics, and the Modern Experience"	2013
•	Michael J. Sandel "Justice: What's the Right Thing to Do?"	2009
•	Daniel Kahneman "Thinking, Fast and Slow"	2011
•	Yuval Noah Harari "Sapiens: A Brief History of Humankind"	2014
•	M. Shanahan "Talking About Large Language Models"	2022
•	A.Y. Halevry, P. Norvig, and F. Pereira "Unreasonable Effectiveness of Data"	2009
•	A. Vaswani, et al. "Attention is all you need" @ NeurIPS	2017
•	S. Yin, et. al. "A Survey on Multimodal LLMs"	2023
•	Chris Miller "Chip War: The Fight for the World's Most Critical Technology"	2022

- CEOs, CTOs, CFOs, COOs, CMOs & CCOs @ startup companies in Silicon Valley
- VCs on Sand Hill Road Palo Alto, Menlo Park, Woodside in California, USA

References

References

- [Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.
- [HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer, 2001.
- [SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Bradford Books, 2nd edition, 2018.

Industrial AI - References

Thank You